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The ideas of Lagrange, Poiwon, Kelvin and Truesdell are reviewed. It is shown 
that in order for a bounding surface not to be a material surface either u . n = e 
must fail or more than one deformation can be associated with the velocity field. 
Examples are given. 

1. Introduction 
A bounding surface is any geometric surface which separates a material body 

from its environment. The material body may be a deformable drop of immiscible 
oil completely surrounded by water, in which case the bounding surface separates 
two different materials, or it may be a small parcel of material which is simply 
part of a larger body, whereby the same type of material lies on both sides of the 
bounding surface. In any case, it is important to keep in mind that no material 
can ever pass across a bounding surface. A material surface is any surface which 
always consists of the same material. 

One might be tempted to conclude that a bounding surface is, indeed, always 
a material surface. For example, in an attempt to distinguish the above- 
mentioned parcel from the rest of the body, we may choose to mark every bit 
of its matter with an ideal ‘dye’ that does not diffuse. The dye then reveals the 
location and shape of the parcel at any instant in time. However, is it necessary 
to dye the entire parcel? Would it not suffice simply to mark only the matter 
lying on the surface of the parcel ? The answer would be yes if the surface bounding 
the parcel always consists of the same material, which is true as long as the motion 
of the entire material body is sufficiently smooth. However, the answer is no if 
the marked surface may tear and fluid which once was located in the interior 
of the parcel may now form part of the bounding surface. Our aim is to identify 
conditions under which each situation occurs. 

It is commonly thought, especially among those in the field of fluid mechanics, 
that bounding surfaces are always material surfaces. There is a history behind 
this, and in $ 2  the arguments and ideas of Lagrange, Poisson, Kelvin and 
Truesdell are presented and reviewed critically. In  order that a bounding surface 
should not be a material surface, the velocity field of the deforming material must 
possess a certain feature. This characteristic is derived in 3 3. An explicit example 
is presented which demonstrates the existence of such motions for an incom- 
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610 E. B. Dussan V .  

pressible material. In  the process of establishing the above, we must make use 
of the boundary condition u.n = c, where u is the velocity of the deforming 
material at  the bounding surface, n is a unit vector normal to the surface and c is 
its speed of propagation. For this reason, a short derivation of this well-known 
boundary condition is given. 

2. Historical background 
The confusion began with Lagrange (1781), the first person to give a mathe- 

matical description of a bounding surface, who assumed that bounding surfaces 
are material surfaces. He realized that this was not entirely true, but his aim was 
to eliminate the possibility of a single fluid body dividing into two separate 
pieces. He was aware that this assumption was not sufficient in itself since, even 
though it eliminated the possibility of the fluid body undergoing a ‘fracturing’ 
type of motion, it did not eliminate the possibility of a fluid body ‘pinching off ’.t 
Figure 1 gives an interpretation of Lagrange’s ideas. Once he had assumed that 
bounding surfaces are material surfaces, Lagrange proceeded, in a very straight- 
forward manner, to show that a necessary characteristic of these surfaces is that 

(1) 

where P = P ( x ,  t )  = 0 locates the bounding surface in space (refer to appendix A 
for details). He also demonstrated the converse by using his own method of 
characteristics; i.e., if (1) is satisfied, then the surface given by F(x,t) = 0 is 
a material surface (refer to appendix B for details). 

Poisson (1842) objected to Lagrange’s assumption that bounding surfaces are 
material surfaces. He wondered why motions in which a fluid point may move 
from the interior to the bounding surface must be excluded from consideration. 
The validity of (I) was thus questioned. 

Kelvin (1848) agreed with Poisson’s objection and proceeded to restate the 
definition of a bounding surface: “If a fluid mass be in motion, under any con- 
ceivable circumstances, its bounding surface will always be such that there will 
be no motion of fluid across it.” He describes several possible motions in which 
fluid points originating in the interior are mapped onto the bounding surface. 
In  no case does the entire mass divide into two parts. (Recall Lagrange’s motiva- 
tion for assuming that a bounding surface is a material surface.) Kelvin, moti- 
vated to derive a mathematical expression, continues: “To express the fact that 
every particle of the fluid remains on the same side of the surface, or that there is 
no flux across it, we must find the normal motion of the surface, at  any point, in 
an infinitely small time dt, and equate this to the normal component of the motion 
of a neighbouring fluid particle during the same time.” Equation (1) follows 
directly (refer to appendix C). 

Having begun with a more general definition of a bounding surface, Kelvin 

t Lagrange’s own words are: “Cette condition parait en effet necessaire pour que le 
fluide ne se divise pas, mais forme toujours une masse continue; cependant nous verrons 
qu’il y a des cases oh elle ne doit pas avoir lieu.” The “elle ” in the quotation is interpreted 
as modifying “une masse continue”. 

aslat +U . v s  = 0,  
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FIGURE 1. (a)  A ,  23, C and D are material points on the bounding surface of a continuous 
mass. (a) The massfractures, i.e. ‘divides’ itself. This type of motion takes material points 
which were originally in the interior of the mass onto the bounding surface. Lagrange’s 
supposition prohibits this type of motion. However, it is still possible for the mass to 
divide itself through a ‘pinching off’ type o f  motion. This is illustrated in (c) and (d). 
(This is the author’s interpretation.) 

ended by deriving the same equation as Lagrange. Kelvin concludes with: 
“Poisson has justly remarked that cases may actually occur in which this 
condition [a bounding surface is a material surface] is violated; but we cannot 
infer, as he and subsequent authors have done, that the differential equation 
[equation (l)] is liable to exception in its applications, although we may conclude 
that the demonstration they have given fails in certain cases.” 

Kelvin never refers directly to the work of Lagrange; if he had, he would very 
likely have concluded that all bounding surfaces are material surfaces. His 
reasoning might have been thus: upon a bounding surface u . n = c (Kelvin); 
u . n = c implies (1) (Kelvin); (1) implies that the surface P(x ,  t )  = 0 is a material 
surface (Lagrange). Therefore, in order for a bounding surface not to be a material 
surface either u.n = c must not be valid at every point on the surface, or 
Lagrange’s demonstration must break down [it should be noted that Lagrange 
does not state conditions sufficient to ensure that the solutions generated from 
the characteristic equations give a solution to (l)]. In the 6rst part of $ 3  a deriva- 
tion is given for u . n = c, and situations in which it is not valid are discussed. In 
the second part of 9 3 it will be shown that, while Lagrange’s demonstration is 
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valid for almost all practical flow fields, there does exist a class of motions in 
which it fails even though the velocity field is continuous and (1) is satisfied. 
For this class of motions bounding surfaces are not material surfaces. 

Finally, Truesdell (1951) claims to demonstrate that, if (i) the velocity field 
of the deforming material is continuous, (ii) the Burface P(x, t )  = 0 is differen- 
tiable, IVFI =k O,w, and satisfies (l), and (iii) the density of the material can 
never approach zero or ink i ty ,  then the surface F(x,  t )  = 0 must be a material 
surface. However, Truesdell uses an incomplete definition of a material surface, 
which invalidates his conclusion (refer to appendix D for details). A counter- 
example to Truesdell’s conclusion is given in § 3. 

The main conclusion of the present work is given in 8 3. This is that the charac- 
teristic which determines whether or not a surface upon which u.n = c is 
a material surface is not the density field but rather the existence of unique 
trajectories associated with the velocity field, i.e. that there are unique solutions 
x = X(R,t) of 

given the velocity field u(x, t )  associated with the deforming material. 

d x / d t  = U(X, t ) ,  R = X(R, 0) 

3. Analysis 
When are bounding surfaces not material surfaces? It was established in $2, by 

combining the analyses of Kelvin and Lagrange, that either u. n = c must fail 
at some point on the surface, or else the solution obtained from the characteristic 
equations must fail to  generate a solution to (1). 

We shall begin by formalizing Kelvin’s definition of a bounding surface for 
the purpose of deriving sufficient conditions for u . n = c. Examples will be given 
in which u . n =i= c; and the surfaces, while being bounding surfaces, will not be 
material Surfaces. It will then be shown that, if (i) u. n = c and (ii) the velocity 
field associated with the deforming material has a unique motion associated with 
it, then the bounding surface is a material surface. An example will be given of 
the contrapositive. 

In  all that will be discussed the only assumption which need be made con- 
cerning the nature of the material body is that it is a continuum. A continuum is 
composed of an infinite number of material points, each point having zero 
dimension (a material point should not be confused with a molecule). The com- 
bined trajectories of all of its material points describes the motion of an entire 
body. The trajectories are commonly expressed in the form x = X(R, t) ,  where 
R = X(R, 0). For example, the trajectory of the material point located at  x0 
a t  t = 0 is given by x = X(x,, t ) .  Hence the variable R is the position vector of 
any material point in the body at time t = 0. 

We shall confine outselves to a specific material body which is located within 
a stationary wall W.  The body is divided by a surface S into two disjoint parts 
B1 and gZ, whose closures are denoted by g1 and B2, respectively (refer to 
figure 2). Hence we have that 8 = sl n g2. 

In  order to derive u.n = c, we begin with a formal statement of Kelvin’s 
definition of a bounding surface. 
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DEFINITION. The surface S is a bounding surface if, for all values of time, 

W 

where R, and R, are the positions at  t = 0 of any material points lying wholly 
within g, and g2 respectively. 

In  other words, if gl is itself a material body and S is its bounding surface, 
then no material point originating either from within 9, or outside gl can ever 
cross the surface S. 

THEOREM 1. If the surface S is a bounding surface possessing a continuous 
unit normal vector n and speed of propagation c,  and if the velocity field is 
continuous throughout the entire domain contained within W,? then u.n = c 
upon S. 

Proof. If the trajectories of the material points were known, then the 
velocity field would be given by 

BX(R t )  
ii(R,t) = (+) . 

B 

Sometimes it is more desirable to express the velocity field in terms of the present 
positions of the material points, u(x, t ) .  The two forms are related through 

U(X, t )  f u(X(R, t ) ,  t )  = ii(R, t ) .  

However, in this case, it is known only that the velocity field u(x,t) is a con- 
tinuous function. Peano (see Birkhoff & Rota 1969, p. 177) has shown that this 
is sufficient to conclude that there exists a motion X(R, t )  which is continuously 
differentiable in t.$ This implies that the trajectory of any material point can be 
represented for sufficiently small t in the following form: 

X(R, t )  = X(R, 0)  + ii(R, 0) t +o( t ) .  

-f In  appendix E this is extended to the case in which the materials are permitted to 
slip along S. 

$ There is only one velocity field associated with any motion, but there m8y exist more 
than one motion which can be associated with the same velocity field. The important 
point is that a function X(R, t )  exists which is continuous in t (this is necessary for obvious 
physical reasons). 
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Any geometric surface can be represented as 

x = 9 ( 8 a ,  t ) ,  

where x is the position vector of a point with surface co-ordinates {sala = 1, S}. 
Since the surface S has a continuous unit normal and speed of propagation, it 
can be represented for sufficiently small t as follows: 

Y ( s a ,  t )  = Y(@, 0) + cn(sa, t )  t + o(t), 

where the particular surface co-ordinate system used has the property 

(y)sa = cn. 

Consider any material point R, located on S at t = 0, and let so" denote its surface 
co-ordinates, i.e. 9 ( s ; ,  0) = X(R,, 0). At other times these two points need not 
coincide; in fact 

{X(R,, t )  - 9 ( s , " ,  t ) } .  n(s& t )  = {ii(R,, 0 ) .  n(s;, 0) - c)t+o(t). 

If u . n =# c, then the left-hand side changes sign as t passes through zero, i.e. the 
material point R, travels across the surface. Therefore, if S is a bounding surface 
it is necessary that u . n = c at  all times (the choice oft  = 0 is arbitrary). 

Q.E.D. 
Therefore a motion for which u .n  =I= c on a bounding surface must have 

a velocity field which is not continuous in the closed domains occupied by the 
material (refer to appendix E for this extension to theorem 1). For example, 
consider a material occupying the semi-infinite space X1 < 0 and undergoing 
the following motion: 

where R1 6 0 and U, is a positive constant. The velocity field 
this motion is 

associated with 

X I <  0, 

(undefined, 0 , O )  X1 = 0. 

The X 2 ,  X 3  plane at  X1 = 0 is a bounding surface, and its speed of propagation 
is zero, i.e. n = i and c = 0; however 

n. lim u(x, t )  = - U,. 

Therefore, for this motion u.n =I= c and X1 = 0 is a bounding surface but not 
a material surface. 

The above example has the unappealing characteristic that the mass-density 
function is unbounded on the plane X I =  0. However this need not always be 
the ease: Dussan V. & Davis (1974) examined a motion in which u . n 4 c a t  an 
isolated point, the material may be incompressible, and the bounding surface 
is still not a material surface. 

1-0 
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THEOREM 2. If the surface S possesses a continuous unit normal vector n and 
speed of propagation c, if u . n = c on S,  if the velocity field is continuous through- 
out the entire domain contained within W t ,  and if the motion associated with 
the velocity field is unique, then the surface S must always consist of the same 
material.$ 

Proof. The components of the velocity field lying in the tangent plane of S are 
given by 

where { ( i iY /as r )  g y a l a  = 1,2} spans the tangent plane of the surface X, gYa is the 
inverse of the first fundamental tensor of the surface, ( a 9 / 8 s a ) .  (aY/asa) ,  and 
as in theorem 1, x = Y ( s a ,  t )  gives the position vector of a point on S with surface 
co-ordinates {sala = 1,2}. Note that the functions @a are continuous since 
u(x,t) is continuous and S is smooth and moves with a continuous speed of 
propagation. Peano’s existence theorem (Birkhoff & Rota 1969, p. 177)establishes 
that the differential equation 

%a = ~ ( S P ,  t )  = ~ ( ~ ( 8 8 ,  t ) ,  t )  . ( a Y / a s q  g y q  

dsa/dt = @a(d, t ) ,  Wa = p( WP, 0) 

has a solution which is denoted by 

sa = p( WB, t) .  (2) 

In  order to establish that (2) can describe trajectories of material points, it 
must be shown that its velocity field coincides with u for all points on 8. The 
velocity field associated with (2) is 

(3) 
d x  a 9  dsa a 9  
dt = (G)JF+(T)&. 

The surface co-ordinate system of theorem 1 is used. Here ( a 9 / a t )  = cn. 
Equation (3) can then be expressed as follows: 

On the other hand, the velocity of the material which instantaneously lies on the 
surface S can be expressed in the form 

u(x, t )  = u(.Y(sa, t ) ,  t )  = @a(sB, t )  (aY/8sa),  + [ u (Y (sS ,  t ) ,  t )  . n] n. 

However, i t  is assumed that this material on S satisfies u.n = c. Hence the 
above can be rewritten as follows: 

u(x, t )  = @a(sP, t )  ( W ’ / a s a ) ,  + cn.  ( 5 )  

t In appendix F this is extended to the case in which u is discontinuous across S. 
$ Truesdell & Toupin (1960, p. 509) assert that “the bounding surface of every body in 

a, topological motion is a material surface”. This is different: theorem 2 assumes that 
u . n = c and not that S is a bounding surface. 

8 All Greek letters can take on the values 1 and 2. Repeated indices imply summation. 
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FIGURE 3. The solid lines are streamlines and the arrows indicate the direction of flow. 
The angles AOB and COB are 30" and 6 5 O ,  respectively. The line DB is the surfaoe 8. 

Upon combining (4) and (5), it follows that 

ds"/dt = a"(@, t )  implies dxldt = u(x, t )  for all points on S. 

In  other words, the velocity associated with (2) is identical t o  the value of u on 8. 
This, along with the assumption that the motion associated with u is unique, 
implies that x = Y(P( WP, t ) ,  t )  are trajectories of material points. Hence S is 
a material surface. Q.E.D. 

To illustrate the contrapositive, two flow fields are examined. In  both cases 
u.n = c and S is not a material surface; however, in one case S is a bounding 
surface, while in the other it is not. The essential characteristic, in both cases, 
is that more than one motion can be associated with each velocity field. 

In the first example, the flow is two-dimensional and the velocity field is 
given by 

- r&{ - 7.033 cos +(# - in) + 7.386 cos $($ - in) 
+0-306sin~(#-Qn)-0.919sin$(#-&r)}, 

+ 0-306 sin $(# - &r) - 0.919 sin $(# - in)], 

0 < $ < in, 

Qn < # < n, 
U(r ,  $) = - d(0.315 cos $(# - QT) + 0.038 cos $($ - Qn) 

cos 4, n < $ 6 27T, 

-o*919cosg(~-Qn)+o~919cos#($-Qn)}, 0 < $ < in, 

- 0.919 cos +($ - 977) + 0.919 cos $($ - &n)}, Qn 6 $ < IT, 
27 < # 6 2n, 

&t(- 21-099sin +($ - Qn) + 7-386 sin+(# - 6.) 
I 
d(0.945 sin $(# - in) + 0.038 sin $($ - Qn) 

sin y5, 
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FIGURE 4. The trajectories of two material points be2onging to gl and arriving at  0 at 
t = to. The curves in (a) describe the trajectory of the material point bcated at  {T = 1 ; 
6 = K} at  t = to - 2. The dots serve only to distinguish the Y(t )  from the X( t )  curve. The 
curves in (a) describe the trajectory of the material point located at  {T = 0.595; q5 = 30') 
at t = to - 2. At t = to the materia1 point splits in two; thus, for t > to there are two sets 
of curves for both Y(t)  rand X ( t ) .  The curves given in (a) and ( b )  are described by (6) and (7) 
respectively. 

where u(r, 4) = uF + v i ;  refer to figure 3. The surface S is given by (4 = 0, m; 
r 2 O } .  The material above S, i.e. 0 < 4 < n-, is denoted by gl and the material 
below IS' is denoted by g2. There are many motions which give rise to this velocity 
field; we are concerned with the specific motion which possesses the character- 
istics illustrated in figure 4. The equations for the trajectories given in this figure 
are as follows: 

"'I Y = {  0, 
0-359(t-t t ,)s ,  t 2 to, 
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(4 I 0 X 

FIGURE 5. The surface DB in figure 3 is not a material surface with respect to gl. The 
curves in (a), ( b )  and (c) are the locations of the material belonging to g1 at times t = 0, 
1 and 2 ;  this location coincides with DB a t  t = 0. The surface DB is not a gl material 
surface because curves ( b )  and (c) are not identical to  (a).  

( 7 4  

and 

(7b) 

I 
I 

i 
[o, t > to. 

0*364(t0 - t)%, t < to, 
X = 0.167(t-t0)*, t 2 to, 

(t-- to)? t > $0, 

0.210(t0-t)+, t < to, 

Y = 0.359(t-t0)3,  t > to, 

That is to say, the material points belonging to gl and lying on {q5 = n; r > 0} 
eventually travel to the ray {q5 = 65"; r > 0}, and the material points lying on 
{q5 = 0; r > 0} come from {q5 = 30"; r > O}.  On the other hand, the trajectories of 
the material points on S belonging to s2 are given by 

x = t-to, Y = 0. 

It is easy to verify that the material is incompressible, that u . n = c, that S is 
a bounding surface, and that it is a material surface with respect to g2 but not 
with respect to gl. To emphasize the last point, the locations at subsequent 
.times of the material surface belonging to Bl and coinciding with X a t  t = 0 are 
shown in figure 5. 
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For the last example, consider the unidirectional motion given by? 

(X1,X2,X3) = ([+t+(R1)#]3,R2,R3).  

The velocity field associated with this motion is 

(u1, us, u 3 )  = ( ( s l ) y o ,  0). 

The other trajectories associated with the above velocity field are 

[(it + (R1)*I3, R2, R3), -00 < t < -3(R1)*, 

(F, X2, X3) = (0, R2, R3), -3(R1)1 < t < K ,  1 ( [+ ( t  - K )  + (R1)*13, R2, R3), h’ < t < 00, 

where K is any constant larger than - 3(R1)*. The surface S is given by X1 = 0. 
In  this case u . n = c ;  however AS’ is neither a bounding nor a material surface. 

4. Discussion 

either u . n = c must be invalid, or else the ordinary differential system 
It has been shown that, if a bounding surface is not a material surface, then 

dx/dt = U ( X ,  t )  

must have more than one solution for a given set of initial conditions. It is 
erroneous t o  conclude that if u . n = G on S then S is a bounding surface. It is 
true that one solution (theorem 2) corresponds to S being a material surface 
(hence a bounding surface), but, if there exists more than one solution to 
dx/dt = u this might not be the one associated with the motion of the deforming 
material. The fact that having u . n = c on S implies zero ‘flux’ across S,  by the 
very definition of the word, does not necessarily imply that material cannot 
cross S. Higher terms are needed in the Taylor series expansion of the trajectory 
of material points instantaneously on 8. In  the last example in 0 3, the trajectory 
of a material point instantaneously on X1 = 0 at t = 0 is given by 

5 1  = &3. 

The material point leaves the surface even though u . n = 0, and (dukdt) . n = 0 on 
the stationary surface X1 = 0. 

When is the solution to dx/dt = U ( X ,  t ) ,  R = X(R, 0 )  unique? It is well known 
that it is sufficient for u to be Lipschitz continuous (Ince 1956, p. 62); however, 
this condition is by no means necessary (an example can be found in Ince 1956, 
p. 67). Lamb (1932, p. 7) demonstrates by expanding the motion of the material 
locally about 8 that, if u. n = c and u is Lipschitz continuous, then S is a material 
surface. However, it  is shown in theorem 2 that the existence of a unique motion 
is a more general criterion. 

The author gratefully acknowledges Stephen H. Davis, who has been a con- 
stant source of stimulating conversation, Fred Kafka for his calculations in two 
examples, and the National Science Foundation, Engineering Mechanics 
Program, for its support throughgrants GK31794, GK 40714 and ENG75-10297. 

t See Truesdell (1951). 
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Appendix A 

kinematic boundary condition, 
Lagrange’s derivation of the expression which is commonly referred to as the 

aPpt f u.  VP = 0, 

is quite direct. He begins by following the trajectory of a material point that is 
located on the surface at position x at time t ,  i.e. P(x, t )  = 0. Since he assumes 
that a bounding surface is a material surface, i t  follows that x+uAt must lie 
on the bounding surface at t -k At, i.e. P(x  + uAt, t -k At) = 0. I f i t  is also permissible 
to write 

P(x + uAt, t + At) = P(x, t )  + V F  . uAt + (aP/at) At + o(At), 

then by making the appropriate substitutions and taking the limit as At --f 0 we 
get the above-mentioned equation. 

Appendix B 
Lagrange demonstrates by his method of characteristics (1779) that if 

P = P ( x ,  t)is a functionsatisfying (1) then the surfacesgiven byP(x, t )  = constant 
are fluid material surfaces. The equations for the characteristics are 

dx/dt = U ,  dFldt = 0. ( B 1 )  

These equations are solved assuming the following initial condition: 

= f (R), 
where R and h are the initial values (say at t = 0) of x and P respectively, and 
f is any arbitrary function of R. The solutions to (1) can be expressad in the 
following form : 

I n  physical terms the function X, upon holding R fixed, describes the trajectory 
of the fluid material point located at R a t  t = 0. The solution P = P(x, t )  is 
obtained by making the following series of substitutions (from left to right): 

x = X(R,t), P = h. 

P = h = f ( c ( x , t ) )  = F ( x , t ) ,  

where ‘5 is the inverse function of X, i.e. R = Z;(X(R, t ) ,  t )  for all values oft. 

the surface F ( x ,  t )  = 0, is a fluid material surface. 
This demonstrates that any surface given by P ( x ,  t )  = constant, in particular 

Appendix C 
Kelvin states that his definition of a bounding surface implies 

u.n  = c,  (C 1) 

where cndt is the “normal motion of the surface, at  any point, in an infinitely 
small time” and u.nd t  is the “normal motion of a neighbouring fluid point 
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during the same time”. If we choose to describe the bounding surface by 
F ( x , t )  = 0 then 

Upon substituting the above into (C 1) we get (1). 

n = VF/IVFI, c = - (aF/at)/lvFI. 

Appendix D 
Truesdell’s analysis proceeds as follows. He examines the position of the 

surface in both the present space, x, and in some reference space R. These two 
spaces are related through the motion of the material: x = X(R,t), where 
R = X(R, 0) .  The image of the surface F(x ,  t )  = 0 in the reference space is given 
by P(R, t )  = 0,t where 

P(R, t )  3 F(X(R, t ) ,  t )  = P(x, t ) .  

The normal speed of the surface in the present space, c,  is defined in $2. The 
normal speed of %he surface in the reference space, co, is given by 

Finally, the normal speed v, of the material points instantaneously on the 
surface is given by 

vn = u.n. 

Combining the above, along with the definitions of n given in $ 2, we get 

for all points x on F(x,  t )  = 0 and all points R on F(R, t )  = 0. 
Conclusions can now be drawn. If the necessary condition v,, = c for P(x, t )  = 0 

to be ;t bounding surface is substituted into (D l), then Kelvin’s result follows; 
i.e. u . n = c implies (1). Next, Truesdell examines the converse. If (1) is satisfied 
and (g)2+(g)2+(jp) aF 2 * O 

then (DI) gives co = 0. What does this imply? We know that in order for 
F(R, t )  = 0 to be a material surface it is necessary and sufficient for the surface 
F(R, t )  = 0 to be given by F(R, 0 )  = 0 for all t .  However it is not true in general 
that 

{P(R, t )  = F(R, 0)  = 0 are identical surfaces} is equivalent to c0 = 0.2 

P(x ,  t )  and P(R, t )  correspond to Truesdell’sf(x, t )  and P(R, to, t ) .  
$ The surface P(R, t )  = 0 may ‘extend itself’ a t  its perimeter, like a ‘snake’; i.8. 

e, = 0 everywhere except at the perimeter, where it is not de6ned. This is illustrated in 
figure 5 : note that the deforming material is incompressible. 
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If we restrict ourselves to those cases in which the above statement is valid, 
then we can draw the conclusion 

aF/at + u . V F  = 0 implies that F(x, t )  = 0 is a material surface, 

provided, of course, that (D 3) is valid, which Truesdell shows to be equivalent 
to the density not approaching zero or infinity. 

Appendix E 
The proof given for theorem 1 fails when S is a surface upon which the materials 

may slip. Nevertheless, the theorem is still valid if u(x, t )  is continuous in the 
closed domains Sl and gZ.t We begin by focusing our attention on gl. We want 
to demonstrate that if S is a bounding surface then ul. n = c, where 

ul(x, t )  = lim u(xl, t )  for x E X; 
x,+x 

X l E 9 '  

i.e. u1 is the velocity associated with Bl. 
Proof. Since it is assumed that gl is a material body, i.e. no material point 

originating in s1 can cross S, the velocity field in gz can be replaced by one 
which is continuous with u1 across S without affecting the trajectory of any 
material point contained within al. The proof given for theorem 1 in 8 3 is used 
with respect to this new velocity field, and the conclusion, ul. n = c on X, follows 
immediately, Q.E.D. 

In  a similar manner, it follows that u2. n = c on S. 

Appendix F 
The materials in domains gl and sj2 must be examined separately, as is done 

in appendix E. Domain gl is considered first. 

THEOREM 2.1. If the surface S possesses a continuous unit normal vector n and 
speed of propagation c, if ul. n = con 8, and if a velocity field can be constructed 
in s2 such that the entire velocity field is continuous within W and there is 
a unique motion associated with it, then no material point originating on S can 
ever travel to  the interior of sl. 

Proof. It is immaterial if more than one velocity field can be constructed in a2; 
it is only necessary that one exists. Theorem 2, with this amended velocity field, 
gives that S is a material surface. Since the trajectories of the material points 
belonging to gl come from the velocity field of gl and not Sz, it  can be con- 
cluded that no material point originating on S can be mapped into the interior 

However, this does not preclude the possibility of a material point originating 
on S travelling into the interior of g2. This dual identity of material points at  S is 
a consequence of modelling material bodies as closed sets. 

of sl. 

t The velocity field is double valued on S because material bodies are closed sets. 
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THEOREM 2.2. If the surface S possesses a continuous unit normal vector n 
and speed of propagation c,  if u,. n = c on S, and if a velocity field can be con- 
structed in Bl such that the entire velocity field within W is continuous and 
there is a unique motion associated with it, then no material point originating 
on S can ever travel to  the interior of G2. 
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